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NASA TT F-15,072

DETERMINATION OF THE PERTURBING MOMENTS DUE TO SGLAR
RADTATION PRESSURE FORCES ACTING ON A BODY OF REVOLUTION

R
Ye. \N., PFolyakhova
. 3

It is known that solar radiation pressure forces cause /153%
the appearance of perturbing moments relative to the center
of mass of an artifilcial earth satellite (AES), the magnitude
of which depends on the reflective capacity of 1ts surface, on
its shape, and on its orlentation relative to the Sun. This moment
is a consequence of the faect that the center of radiation pressure,
as a rule, does not colincide with the center of mass of the AES.
We will examine the problem of deriving simple approximate
formulae, suitable for the evaluation of the perturbing moments
due to the pressure forces con an AES having the form of a body

of revolution.
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#igure 1. The geometry of incident and reflected rays.

We will examine a unit area, ds, oriented at the angle
to the radiation flux 7§ (Fig. 1) (the angle ¢ is the angle
petween the light ray 3 and the normai n, directed toward
;;:the propagatlng 11ght) Falllng on it 15 a flux of radlatlngn
energy, S cose (S is ar”solar constant" in the earth's orblt al

T A

unit energy flux falllng on an area normal to 1t) The correqunding

‘
b,

The corresponding amount of motion, imparted to the unit
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area by the flux of solar radiation, is Sc_lcose, where ¢ is
the speed of light. The modulus of the component of force d?l,

acting in the direction of the flux, % , is written thus:

dfye= Preosdds (P, == Se7'==0046- lO"r“.d'y:n 6‘33), } (1)

Besides the component d?l, a second component dfg acts on the
area, appearing as a result of the action of the reflected

ray, pointing in the direction opposite it; and having a modulus
df:! el 1 !", s el s ,‘ (2 )

where ¢, the coefficlent of reflection, is the ratio of %the
densities of reflected energy and incident flux. In turn, one

may represent the force d?l as the sum of two components, co-linear
with the vector #:

e d £ df  df == df it ur'f’f,] (3)

where

d fr= (1 —2) P, cos i ds, df; z= e, cos Hils, , ()

"

thus separating it from the component dfl, equal to dfg. Con- /154
sidering the symmetry of the incident and reflected rays

relative to the normal n, one may conclude that the sum of the
vectors, df}-and df,, which are of equal modulus, ls positioned,

1
in fact, along the normal n, and i1ts modulus will be

d}“,;-—_::QePr vos® & ds. (5)

Thus , we may write the total force df as the sum of the component

2



! _
from the impact dfl (partial) and the normal component dfrl

df =dfi+df,. | (6)

Another representatlion of df is possible: if the remaining
1 " —
force dfl, directed along “4s is broken into tangent and normail

— .
compenents, df Tand dfln respectively (Fig. 1), then one can

i 1
represent the force 4df as the sum of the summed normals and the

tangentlial component:
df = ((ff ;.,, -} df”) -+ d}_ﬂ;:. \‘

We will now consider the AES (a body of revolution) and
assign to it the following system of coordinatés, Oxyz: 0 1s
the origin on the axis of revelution; the 2z axis runs along
the axis of revolution and is directed so that the l1lnner normal
to the surface forms an acute angle with the z axis; the yz plane
is oriented so that it always contains the light flux 2. Pro-

jecting (6) onto the coordinate axes, we get

=1 —e) 2, cos i} cos (4, xYds |- 2eP cost i) cas (;;,A_z) as.

(7)
and so forth.
Setting up the integral formulae for the moments of the
radlation pressure forces, we also write them as the sum
¢{ df, dfy "t .
o (e o |
and so forth (8)
where M =(l—e) £, “v [veosteos(l, 2)-—zcos Beos{l, W)l ds,
Myw=2eD, jlj' | ¥ eosH i) cos (;i, Z’) e 2 OST GO (}1, 3’)] .iiS. : (87)

i
Formulae (8) and (8') make it posslble to define the moments

of the pressure forces if cos § and the six directlon cosines



of the incident ray,z and of the normal to the surface E, cos
P \— __!"'\_ —
(¢sx) . . . cos (n,z), are known. The direction cosines of n
depend only on the shape of the surface and may be calculated /155

on the basis of the equation of the surface, (x,y,z) = 0,

according to the formula

S W P !

Cos (f, X) == et |
Vit e rat | (9)

N :
Considering that products of the type cos (n,z)ds represent the
area of the projeé¢tion of area ds onto the xy plane, l.e.,
d

SX& = dxdy, we will write an expression for the moments in.the
following manner:

jH: == 28./-3, ([l.r - IZx)a v ‘ ( 10 )
~lf§zcns”}dzdx.J

.
Ty Xz

#

o= yeost o dxdy, 1,,-

If cos @ = const. (a plane), then it follows that one can calculate

these integrals in quadratics, substituting the corresponding

coordinate function for Sxy’ Sy and Syz' In the general case of
an AES of arbitrary shape, it follows to evaluate beforehand an
2

approximate mean value of cos ~o.

For the moments M; from formula (8) one may write analogous
formulae .
M= (1 =) P, (K1 = K,
K, = j‘f Jreos # cos (?AE) ds, K, = Y‘ zeosd cos (2;}') ds.
v (11)
For the representation in (11) it is more convenient to use

the expression

e L S P Ny o 12
eos == cos ([ x) cos (n x) 4 cos{l y) eos (ny) -} eos (1 2) cos (1 2). (12)

Breaking each integral of type K into three integrals, we get

1x



: 3 o S
K o==cus({ z) 2 Kre, Kyo=rcos ([ y) 2 K3, !
N < fesl . .

&~ ) (13)
where :
1 N » 1 N + . l
Kle=rcos (T, %) [ yady dz; Kie=cos (T x) | {2y de,
K'Ex =z 008 (f’;) j‘j‘y dzix; [\’%_r == CN§ (TA}) Sg zdzdx, .
K== cos ([_{\z") “‘ y dxdy; Kie = vos ([::E) H zdxdy, (131)

N
It follows that the direction cosines cos (& x} may be
calculated earlier according to the conditions of illumination,
and the, integrals may be calculated in guadratics or according to

the formula of static momentg:

y . ‘”' ydx dy_zycsxy,

1

|
E'Iy . X i

7156

where Yo is the ordlnate of the center of mass of the =
area SXy (the projection of the 1lluminated part of the

surface of the AES onto the coordinate plane).

2. DETERMINATION OF THE MOMENTS, ACTING ON A CONICAL AND ON A
PARABOLIC ALS
We will look at a conical AES, at the top &.of whileh we
will place the origin of the coordinates. Let the dimension R
and H=Rp_l be given so that the angle of the semi-span of the
cone ¢ may be taken as known. Let the ray ﬁ_lie in the yg plané,
sc that

|#

cos (1 X} =0, cos v _j;) = —"ros B, cos (f

)= —sin (ﬂ\ (14)

t

The problem consists cof detfermining the moments of the

radiation pressure forces for the conical surface pz - #kg + y2 =

= g tan ¢ - r2 = (0, the direction cosines of the normals to

the surface beling:



z L x
Cos (I XY = -~ ——izom
e . rV pr+1
e £ o~ y
i cos (1.3) =~ [y (15)
: \ COs (ﬁ_zd)-'_-.-a—v-_—lp-:-i-,
! p.! -

/"":- T

ez

while for the yz plane containing

Szy | the ray ¢ we immediately get cos {(n %)

! 0. ;E is also easy to determine

s 5 A e the areas of the projection = . . -
igure 2, cone o ] .

revolution. of the illuminated part of the
surface onto the coordinate planes.

Sey = R, "‘;‘xz == RH sin ([) \

: -

We set up the expression for M%:

,iM; = (1 —c)P, [(‘,nh'B ( l/:'a'_) ‘j ydxdy— cus? (IA'\T) j.j - dzdx] = ’

T
a

= (1 —e) P [sin?B 1, 4 cos?f. 1], [ (16)

where the integrals Il and 12 must be calculiagted in the sector

sxy and in the triangle Sy.,> @5 2 result of which we get
S T ' '

1 = j. pidp j cos [ dy= -:‘;;- R sin g,

0 R

where - “h==arctg Voige-olgff —1, .
i + 1 7 n '
Iy == gzdz { dx-—:‘ZS 21(2) dz==—-RH? sin ¢,
AR 17 N ’ )
— _ Rz sinsg., ., . .
where  }(z) = ———= 1s half of the line passing through the /157

triangle I parallel to its base (Fig. 2)}. From here

i
'

M= (1 ~¢) P,-—g—rsin 3 (R7 sin? fl. + R cos? B). ! (17)

L
By analogous means we may get the formulae for MX:

6



My = 2:P (0 -1- Qu),

. : : 18
’ Ql:jj cost by dxdy, Q.= ”cnsz{}zdxdz. | (18)
We set up the expression for cos 0 according to formula (12)
(,nt.n_--.—l— -)-’—(m[i-—pblnﬂ |
y;“" r ' (19)

X

from which 1t 1s evident that cos 6>0 foyJ’E—-——E
x +y

greater than p tan B, as a result of which the equation of the

terminator

VTR . - !
Gt Ve R e = =
represents an equation of two generatrices of the cone, the
‘projections onto the xy plane tilted from the y axis to angles
of v and -¢¥. Squaring (19), we derive two expressions for the
integration with respect to dxdy and dzdgz:

Ao

costhmm A? Sp — QAR-L | Bra= — Lo o —

9 z‘l!:’,f ) Vﬂ'z;-—- X +(/1‘£+H3).

where *ﬁéﬁ%ﬁ%f- P jgﬁﬁi-f
Carrying out the integration, wé receive for Ql and Q? |
Q, == '!_i AR (2 h‘ili oo -—'i— sin? '-P) — }— ABR"’(‘? + 'l" sin 2'?) + i
- —ﬁ- BRY sin l{J, Qg = - —-A*R P2 sint iy - i
- -—ABH';? (y 1_ - 8in 2@) -—3-- (A - B) RH*® Hi",'l)' | }
Thus the prcblem of determlning M according to formula (18) is

solved.

If several averaged values of cosEO for the 1llumination

of the surface are known beforehand, then, signifying 1t by o,



one may write

M= 20y sin g (10 REF).

Tor o it is convenient to take a constant value of /158

cosge= (A-B)2 for the generatrix of the cone, lying in the plane

of the light flux %.

If it is necessary to move the moment to the center of mass
of the cone, that follows by the use of the formula

17 E
Mo=M,—(OC x R)=M, —10 0 (0C), |+
OR, R, | .

% 1,

for a body of revolution, it is_sufficient to determine only 1ts

where R = is the main veector of the forces of pressure, thus

T u
component Ry = Ry + Ry accordling to the formulae

Ry=1(1--2)P, EY cos B cos (1 yyds, Ry=2:P, j S cos? i cos (E?);') ds, 1
which for a cone takes on the following form: 7

Ry=—( "“-5) :Pr |R2Y sin fl cos B 4{— RH siny cos? B,
. BT I .
Ry = QEPI[T;F?H‘ sin i - ABHp ((‘9 + _.I)_ sin 41) —

— (A? 4= B*j R sin np] , (20)

or for an approximate variation

-R_:r = = 2ePaRH sin ‘}.1

The magnitude of (OC)Z will vary depending on the construction of

the cone: for a continuous, uniform cone, (OC)Z = OC = % H;

for a hollow and open cone, 0C = % H; for a hollow and closed
" cone, 0C = T%ﬁ (%g + R), where g is the length of the generatrix.

For a closed cone, 1t is easy to determine the moments of

forces acting on the base:



My =(1—2) P sinfeos BxRPH, M, ==, \\ (21)
Ry=— (1 — &)L, sinfpoos BRY, Ry=0.

We will now look at a parabolic AES, oriented in a manner

similar to the cone (Fig. 3) with the eqguation of the surflace
2 2 _ Re
2pz - (x~ + y ) =0, where p = 5g 18 the parameter of the

generatrix of the parabola. The direction cosines of the normal
to the paraboloid are such

T —x g e N .
“mmxﬁ=7ﬁﬁﬁﬁﬁf'm“mmﬁ'Vﬂ$?:ﬁ'
'.'_’.\. p____ ’
- mﬁ“Zﬁ;?ﬁ?}w:;sk
thusfﬁor the yz plane, containing the light flux £, we have /159
cos{n x) = 0. Correspondingly for cos & we get
‘ L 7 ,
COS 1) == e (P COS B — p SiDB), }
I/x'»‘_-‘i—yk’-A!-z'e‘(‘l p—p f) | (22)
The equation of the termi-
z o nator in the given case is
the equation of the para-
iy 2, 2.2

LA
VR

L

bola x +p tan"g = Zpz, the

top of which lies above the
. CX lane at a height h =
T Z\eNT y y.p &

bl

= %p tangs. The abscissas of

the points of the illuminated

Figure 3. Parabolold of surface and of angle 8 satisfy
revolution. the conditlons

~Vﬁﬁﬁﬁ}xﬁV%ﬁﬁﬁl-M%gﬁwm@%u
For B greater than arctan % not one point on the outer surface is

11luminated. Deriving the integral with respect to dxdy and

dxdz for the parabolic surface, we get



) .
5=WW1‘( I e == plg B,

/—lV"?‘}"'[’T‘(/!m--ﬁ)'Ev /;(H_/:)J} ’ o (23)

7 ’ ’ 1
so that formula (16) 1s again used Tor the calculation of Mx

}

Moving on to the calculatiocn of M;, we note that the
precise calculation ¢f the integrals Ql and Q2 from formula : -
(18) is done in this case with too much difficulty, and for an
approximate evaluation 1t is sufficlent fo use an averaged value
of 0032 0, which for a paraboloid will not be constant for the
directrix as 1n the case of the cone. For the determination of
o we square (22) and setting x=0 (the directrix, lying‘in the
plane of flux), wWe get the expression

! |

c0s i im —m——een
" [ZENE

Tenst B = 2 yp sin B cos B e g win?p),
y I .

- -

averaging which with respect to the directrix, we get the formula

for o: R

g == }‘, Yros-f}dy'—-ms‘z + pRA (sin2 g — f
|
|

1} .
R‘+p?

1
Thus, the problem concerning the determlnatlon of M may be /160

— cos? ﬁ) arctg (p!? Y — p R sln B cos i In—7z"—

considered solved.
For the area of the projection it is easy fto get
S-ry:‘%'_‘ ““.’VR -—-q —-R arcsin
S VQp(H 0y,

?

50 that for transfering the moment to th2 center of mass, 1t follows

to use the formulas

R;:“(l ‘“‘3) Pr(ﬂin‘@('ns lﬂ Qx\ ”{ ‘““ rz) R\f‘—”" - 2eF P8z |

(0C )=OC=§H (a continuous uniform paraboloid).
2 .5

10



Phe following model problem will be carried out as an example
of the calculation of the moments of the radiation pressure forces
examined: determining the moments for ftwo continuous uniform bodies,
a cone .and a paraboloid with identical linear dimensions: R = 1 m,
H =10 m while e = 0.5 over the entire range G§8i3600. The results
of the caleculation of the magnituge of M; are presented 1n Fig. 4,
Shown 1n Fig. 5 are the moments Mx for the variation of approximate
evaluations of cosze along the directrix of the body. Shown in Fig. 6
is the total moment Mx(c), ecalculated relative to the top of the body
of revolution, and the moment, calculated relative to the base.
Presented in Fig. 7 are the moments transferred to the center of mass
{the continuous line corresponds to the cone; the dashed line, to

the parabolold).

CONCLUSION

We have examlined the problem concerning the analytical
determination of the moments of the solar ray pressure forces
on a body of revolution, located in the radiation flux. General
integration formulae were worked out separately for the moments
of the pressure forces directed along the ray of light, and of the
forces directed along the normal to the illuminated surfaces.
The acquired formulae, for the most part, are convenient for
approximate evaluations and rough estimaftes of the boundaries of
change of the magnitude of the perturbing moment of an AES for the
whole range of angles of illumination during its movement along
its orbit. The acquired results, presented graphically, allow:one-
to make the basilc conclusion that an elongated body, located in a
flux of radiation, will try to align itself lengthwise along the
flux as a result of the action of the perturbing moment. Here,
the perturbing moment of the pressure forces causes the turning
of the body about the 0x axis, perpendicular to the radiation flux %

and simultaneously perpendicular to the axis of revolution Oz.

11
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Figure 4. The moments MX as a figure 5. The mcments M as
function of aifigle funcetions of Tangle
of 1llumination B. of illumination B.
B
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o - 0.0504
L !
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Figure 6. Total moments M Figure 7. The moments M (moved
as functions of to the center™S§f mass)
angle of illumination B8. as functions of angle

of 1l1lumination g.
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In the stated formulation of-the problem, we confine
ourselves to the examination of the dependence of the moment
of the pressure forces on the angle of illumination, B8, by which /;gg
we mean the,angle bétween the ray ¢ and the coordinate axis
which is perpendicular to the axis or revolution of the body.
For each specific body, formulae were worked out for the
connection of angle g with the angle of incidence g , formed by the
ray g and the inner normal‘ﬁ, however, we did not connect fthe
,ahgle B with time, l.e. with a specific position of the AES
in orbit and its orientation relative to the Sun. For the
solution of the problem of determining the moments at a given
moment of time, it is necessary to have available the dependence
B = B(t), for which it follows that one must determine the
direction cosines of ¢ with the axes of the orbital system of
coordinates according te the mutual positions or the AES of the
Sun and one must determine the orientation of the axis of revolution
of the AES relative to this same system.along the given Eulerian
angles. If, for instance,
the AES 1is gravitationally

a&v oriented, then the main
050 kR |
a7
0ea ¢
4t |
030t
015}

axls of inertia (in our
case, of revolution) is
directed along a gectentric
radius vector.

! - The presented formulae

Vo2 30 4 5 W0 &P for the moments were set up

Figure 8. Values of the parameter approximately under two
c as a function of the

angle of illumination 8. basic simplifying assumptions,

The first of these, as was
already pointed. out, 1ls that the light flux . is propogating in the

plane of symmetry of the arbitrarily oriented AES, containing

13



the axis of revolution: as a consequence of the symmetry of
forces, determined by the stated assumption, the general integral
formulaerare substantially simplified. The second simplifying
assumption is used only during the determination of the moments
M; and relates to the magnitude of cosze, which for sufficiently
simple bodies (a sphere, cylinder, or cone) may be calculated
exactly by means of the calculation of the corresponding surface
integrals., However, for more complex bodies, for instance, for a
paraboloid, the calculation of these infegrals is much too

time consuming and it is more convenlent to use a value of o
averaged along the directrix, placing it outside the integral sign.
The error, appearing as a result of such a substitute, may be
evaluated from the graphs in Fig. 8, where the following curves
are presented for selected model problems: "cone I(o)" is the
curve of ¢ based on the approximating relation o = o{(B) = cosge=
= (A—B)2 (a directrix, lying in the plane of the flux); “cone
II(in is the curve of ¢ = o;, obtained according to the formula

—om= Y= |
CEAE R T
in which Ql . I2 are calculated exactly with the help of an /163

integration (the sumbol 9y corresponds to the integrated mean
value of o). A comparison of the curves shows that the use of an
approximate ¢ gives an increased value of the moment to a maximum
of 1.3 times 1n comparison with the exact moment. The curve
"paraboloid (¢)" corresponds to the approximate variation of ¢
(the exac{ value we will not derive), however, keeping in mind the
geometrical properties of a parabolic surface, one may assert

that the expected error in the determination of the moment will

not exceed the error for the ccne,

Al1]1 the ennumerated assumptions lead to a substantial

simplification of the formulae, as a result of which all the

14



integrals are expressed in quadratics while the rigorous analytic
determination of the moments of the radiation pressure forces 1s
eXtremely time-consuming even for simple surfaces and does not

have any advantage over numerical methods.

15



